Will Synthetic Biology Evolve Into the Next Hot Field?

Synthetic biology grew from a very old human desire to engineer living systems and make them do useful things for us.

As genetic engineering of the 1970s has evolved into synthetic biology today, the technologies and economics for sequencing (reading) and synthesizing (writing) DNA have become optimized for large-scale DNA processing. This allows synthetic biologists to design and modify the genetics of living systems so that they produce a wide variety of materials for us that don’t occur in nature, such as drugs, biofuels, flavors, fragrances and more.
The field is garnering the attention of entrepreneurs and investors -- here are some things you should know that help explain why.
The growing "Bioeconomy." Domestic revenues in the U.S. from genetically modified systems are growing faster than the economy as a whole, weighing in at approximately 10 percent annually, according to Rob Carlson, principal at Biodesic and bioeconomic consultant to The White House. The Genetically Modified Domestic Product in 2012 (GMDP) was $350 billion, or roughly 2.5 percent of GDP, up $50 billion from 2010.The growing "Bioeconomy." Domestic revenues in the U.S. from genetically modified systems are growing faster than the economy as a whole, weighing in at approximately 10 percent annually, according to Rob Carlson, principal at Biodesic and bioeconomic consultant to The White House. The Genetically Modified Domestic Product in 2012 (GMDP) was $350 billion, or roughly 2.5 percent of GDP, up $50 billion from 2010. The shrinking cost of the sequenced genome. Why the growth? The cost of sequencing DNA has been plummeting since “next generation” sequencers hit the market in 2007. It did so at a rate that far surpassed Moore’s Law -- the rule that says computing power doubles and gets cheaper about every two years. However, as Carlson explains on his blog, the most up-to-date data shows that the cost curves are no longer exponentially decreasing. This is likely a healthy reflection of the fact that the companies involved are not losing revenues.

Despite the recent gradual slope, the exponential drop in DNA sequencing ushered in projects that would have been laughably ambitious just a few years earlier. The Human Genome Project was a massively expensive undertaking that took place between 1990 and 2003, involving more than 200 scientists and $3 billion to read the roughly 3 billion bases of DNA in each and every one of us. Today, thanks to the drop in sequencing price per base and grant funding from the U.S. National Human Genome Research Institute, the awards for the last round of funding to achieve the $1,000 human genome will be granted this year. It’s not here yet, but it is on its way.

3. Increased support from public and private sources. In 2004, the Bill and Melinda Gates foundation helped put synthetic biology on the map when it granted $42 million to the University of California at Berkeley, the Institute for OneWorld Health, and the California-based Amyris Biotechnologies for the research and development of an antimalarial synthetic drug called artemisinin. Ten years later, the UK boldly named synthetic biology as one of the “Eight Great Technologies” that will accelerate economic growth this century and have allocated about $265 million for its development and commercialization.

 Filed under: Science

Comments

You must be logged in to comment

Site Statistics

Posts
48,602
Comments
31,951
Members
26,150